
WATER RESOURCES RESEARCH, VOL. 36, NO. 11, PAGES 3241-3249, NOVEMBER 2000 

Alternative principal components regression procedures 
for dendrohydrologic reconstructions 

Hugo G. Hidalgo 
Civil and Environmental Engineering Department, University of California, Los Angeles 

Thomas C. Piechota 

Department of Civil and Environmental Engineering, University of Nevada, Las Vegas 

John A. Dracup 
Civil and Environmental Engineering Department, University of California, Los Angeles 

Abstract. Streamflow reconstruction using tree ring information (dendrohydrology) has 
traditionally used principal components analysis (PCA) and stepwise regression to form a 
transfer function. However, PCA has several procedural choices that may result in very 
different reconstructions. This study assesses the different procedures in PCA-based 
regression and suggests alternative procedures for selection of variables and principal 
components. Cross-validation statistics are presented as an alternative for independently 
testing and identifying the optimal model. The objective is to use these statistics as a 
measure of the model's performance to find a conceptually acceptable model with a low 
prediction error and the fewest number of variables. The results show that a parsimonious 
model with a low mean square error can be obtained by using strict rules for principal 
component selection and cross-validation statistics. Additionally, the procedure suggested 
in this study results in a model that is physically consistent with the relationship between 
the predictand and the predictor. The alternative PCA-based regression models presented 
here are applied to the reconstruction of the Upper Colorado River Basin streamflow and 
compared with results of a previous reconstruction using traditional procedures. The 
streamflow reconstruction proposed in this study shows more intense drought periods, 
which may influence the future allocation of water supply in the Colorado River Basin. 

1. Introduction 

Dendroclimatic analysis has long been used to extract hy- 
droclimate signals from tree ring chronologies. The climatic 
information stored in trees in the form of ring width and wood 
density allows researchers to reconstruct hydroclimatic time 
series such as precipitation, streamflow, and the Palmer 
Drought Severity Index with annual resolution. Expressed as a 
mathematical transfer function, this relationship allows us to 
use the information from trees (predictor) to reconstruct past 
unrecorded hydroclimatic conditions (predictand). In dendro- 
climatology it is common to use principal components analysis 
(PCA) in the formulation of the transfer function that relates 
the variation between the predictor and the predictand. Ap- 
plications of PCA in dendroclimatology include Stockton and 
Jacoby [1976], Fritts [1991], Meko et al. [1993], Brockway and 
Bradley [1995], and Meko [1997]. Comparison between orthog- 
onal spatial regression and canonical regression is given by 
Cook et al. [1994]. 

The focus of this paper is to evaluate different PCA regres- 
sion model procedures used in dendrohydroclimatic recon- 
structions and to use the best ones to compare the results to 
traditional PCA-based reconstructions. It will be shown that 

PCA results and subsequent regression results can vary signif- 

Copyright 2000 by the American Geophysical Union. 

Paper number 2000WR900097. ' 
0043-1397/00/2000WR900097509.00 

icantly depending on several PCA procedural choices. The 
main procedural choices include the number of principal com- 
ponents to retain, whether or not to rotate the principal com- 
ponents, and the measure of skill used to assess the models. 
Cross validation is also presented as a method for indepen- 
dently testing the model and evaluating the best subset of 
predictors from a data set. These procedures have been pre- 
viously used in the field of hydrology to form better hydrologic 
forecasting models (e.g., Garen [1992]), but they have not been 
used in dendroclimatology for the reconstruction of hydrologic 
variables such as streamflow. 

The procedures selected as the best ones in this paper are 
evaluated in a streamflow reconstruction case study using stan- 
dardized tree ring growth indices. The case study is the Upper 
Colorado River Basin (UCRB), which is the most important 
river basin in the southwestern United States in terms of water 

resource usage. This paper presents a comparison of a previous 
reconstruction by Stockton and Jacoby [1976] (hereinafter re- 
ferred to as SJ) with the streamflow reconstruction performed 
using the selected procedures for PCA regression and predic- 
tor subset evaluation. 

2. Data Sources 

The tree ring index chronologies for the UCRB were ob- 
tained from the National Atmospheric and Oceanic Adminis- 
tration (NOAA) International Tree Ring Data Bank (available 
on the World Wide Web at http://www.ngdc.noaa.gov/paleo/ 
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Figure 1. The locations of the 17 tree ring site chronologies 
in the Upper Colorado River Basin used in this study. Annual 
water yield contours shown (mm/yr) were computed using data 
from U.S. Geological Survey (available on the World Wide 
Web at http://water.usgs.gov). 

treering.html). A tree ring index chronology is a standardized 
record of tree growth. Standardization removes the inherent 
growth trend in the raw tree ring data due to the normal 
physiological aging processes. From the 17 chronologies se- 
lected to represent the UCRB, 13 of them are the same ones 
used by SJ. Four of the SJ original sites were not available in 
the NOAA International Tree Ring Data Bank; these chro- 
nologies were replaced by sites located near the original SJ 
sites and have similar statistical characteristics. Location of the 

chronologies can be found in Figure 1 and the sites character- 
istics are listed in Table 1. 

The common streamflow data set used for streamflow model 

calibrations in the Upper Colorado River Basin is the Lee's 
Ferry record. Lee's Ferry is located at the legal dividing point 
between the Upper and the Lower Colorado River Basins 
(Figure 1). An annual unimpaired streamflow record for Lee's 
Ferry from 1896 to 1995 was obtained from the United States 
Bureau of Reclamation (USBR) (available on the World Wide 
Web at http://www.usbr.gov/main/index.html). However, only 
data from 1914 to 1963 were used owing to the following 
reasons. First, the majority of the chronologies in the SJ study 
ended in 1963, which also corresponds to the construction of 
Glen Canyon Dam and Lake Powell. For consistency, this 
study only uses streamflow data up to 1963 for calibration to 
allow comparison of our results to the original 1976 study by 
SJ. Second, it should be noted that the streamflow data from 
1896 to 1913 were extrapolated from distant stations and are 
not as reliable as the data after 1913 (SJ). The data from 1914 
to 1922 were compiled from the three main tributaries of the 
Upper Colorado River Basin and are judged to be reliable for 
hydrologic studies (SJ). In 1923, a stream gauge was installed 
at Lee's Ferry. Only the data deemed more reliable (1914- 
1963) were used in this study and compared to the SJ model 
having the same calibration period ("50 year calibration pe- 
riod" model by SJ). 

The correlation between streamflow at Lee's Ferry and the 
17 tree ring chronologies is presented in Table 1 in the corre- 
lation criterion column. Of the 17 chronologies, chronologies 
4-17 have a significant correlation [Panofsky and Brier, 1968; 
Fritts, 1991] with streamflow at the 95% confidence level. The 
cross-correlation matrix between the tree ring chronologies is 
presented in Figure 2. The order of the chronologies in this 
matrix, as well as in Table 1, is based on increasing lag 0 
correlation with streamflow. The results show that chronolo- 

gies with a high correlation with streamflow also have a high 
cross correlation (Table 1 and Figure 2). 

Tree ring chronologies are known to have a relatively high 

Table 1. List of Tree Ring Chronologies Used in This Study 

Site Identification ELEV, Correl. 
Number Site Name Location Year Number SPID m Criterion s.d. rlagl M.S. 

1 Unita Mountains A Utah 1972 277550 PCEN 3353 0.14 0.14 0.67 0.11 

2 Gros Ventre Wyoming 1972 316597 PIFL 2179 0.17 0.28 0.47 0.26 
3 Chicago Creek Colorado 1965 115549 PSME 2835 0.22 0.39 0.26 0.40 
4 New North Park Colorado 1965 110549 PSME 2469 0.31 0.37 0.54 0.31 

5 Uhl Hill Wyoming 1972 318599 PIFL 2225 0.36 0.29 0.52 0.27 
6 Black Canyon Colorado 1965 117549 PSME 2426 0.41 0.35 0.52 0.31 
7 Wind River Mountains D Wyoming 1972 283590 PIFL 2500 0.47 0.26 0.51 0.21 
8 Upper Gunnison Colorado 1965 116549 PSME 2530 0.54 0.34 0.38 0.38 
9 Mammoth Creek Utah 1990 MAM519 PILO 2590 0.56 0.37 0.17 0.41 

!0 La Sal Mountains A Utah 1972 285620 PIED 2323 0.57 0.33 0.42 0.34 
11 Bobcat Canyon Colorado 1972 61099 PSME 2042 0.62 0.43 0.25 0.47 
12 Nine Mile Canyon Utah 1965 123549 PSME 1920 0.64 0.41 0.41 0.39 
13 Navajo Mountain Utah 19•72 133099 PIED 2286 0.66 0.44 0.21 0.51 
14 Unita Mountains D Utah 1972 280620 PIED 2289 0.69 0.32 0.46 0.31 

15 Eagle Colorado 1965 112549 PSME 1951 0.69 0.35 0.62 0.28 
i6 Sch. Old Tree 1 Colorado 1964 640106 PSME 2103 0.69 0.45 0.30 0.51 
17 Eagle East Colorado 1965 113629 PIED 2164 0.77 0.29 0.34 0.31 

The year column corresponds to the year when the chronology was sampled. SPID refers to the following tree species: PCEN, Picea 
engelmannii; PIFL, Pinus flexills; PSME, Pseudotsuga menziesii; PILO, Pinus longaeva; PIED, Pinus edilus. ELEV is the elevation in meters above 
sea level; Correl. Criterion is the correlation between the tree ring index and streamflow; s.d. is the standard deviation; rlagl is the lag 1 
autocorrelation coefficient; M.S. is the mean sensitivity [Fritts, 1976]. All the statistics are computed for the time period from 1493 to 1963, except 
the correlation criterion, which is computed over the 1914-1963 time period. 
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Site # 

Unita Mountains A, UT 1 
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Figure 2. The cross-correlation matrix for the 17 chronologies used in this study. 

degree of autocorrelation, even after detrending, caused by the 
biological carryover effects from year to year. To account for 
this characteristic of tree ring data, it is common practice to 
include lagged versions of the chronologies of standardized 
tree ring widths in the reconstruction model [Fritts, 1976, 1991; 
Cook and Kairiukstis, 1990]. The lagged chronologies were 
included in the model used in section 5.3 to compare it with a 
previous streamflow reconstruction in the basin by SJ. 

3. Principal Component Analysis (PCA) 
Regression Models 

A common problem in dendroclimatological reconstructions 
is the presence of multicollinearity or linear codependancy 
among the predictors, in this case tree ring chronologies. Be- 
cause of the high autocorrelation of tree ring chronologies 
(section 2.1) the inclusion of lagged time series in dendrocli- 
matological reconstruction models increases the possibility of 
having problems associated to multicollinearity on the results 
of these models. 

Linear regression is based on the assumption that the inde- 
pendent variables are not significantly correlated. When highly 
intercorrelated predictors are used in a multiple linear regres- 
sion model, multicollinearity can become the cause of statisti- 
cally imprecise and unstable estimates of regression coeffi- 
cients, incorrect rejection of variables, and numerical 
inaccuracies in computing the estimates of the model's coeffi- 
cients [Cureton and DMgostino, 1983; Weisberg, 1985; Fritts, 
1991; Jennrich, 1995]. In addition, including too many variables 
may result in an undesirable effect of "over fitting" the model, 
making it able to predict even the smallest variations from 
noise in the observed data but with a low predictive skill [Jack- 
son and Chan, 1980; Cureton and DMgostino, 1983; Jennrich, 
1995]. 

By using PCA the original data set can be transformed into 
linear combinations of the original variables to create a new set 
of variables or principal components (PCs) that are indepen- 
dent of one another (i.e., orthogonal). PCs are extracted using 
an eigenmode analysis from either the correlation or the co- 
variance matrices of the original variables. In this study, the 
PCs were extracted from the correlation matrix. In PCA the 

number of PCs is equal to the number of original variables, and 
the PCs are usually presented in order of greatest to least 
amount of variance explained from the original data set. If 
there is a high degree of multicollinearity in the data set, most 
of the variance can be explained with a fewer number of PCs 
than original variables. The PCs can also be used as predictors 
in a regression model, removing multicollinearity problems 
among the independent variables. 

In the case of streamflow reconstructions using tree ring 
chronologies, the number and selection of which PCs and pre- 
dictors to be included in the final model and deciding whether 
or not to rotate (section 3.4) the PCs must be carefully evalu- 
ated. The possible models that can be built using these alter- 
natives are shown as models A-H in Figure 3. A more detailed 
explanation about each of the alternatives shown in Figure 3 
will be given in sections 3.1-3.4. 

3.1. Truncation or Preselection of Principal Components 

The selection of significant PCs, or truncation, is accom- 
plished by prescreening the PCs, using an objective criterion 
before they are included in the regression part of the model. 
Truncation of PCs is a topic of conflicting opinions. Some 
authors [Haan, 1977; Garen, 1992] (hereinafter referred to as 
GA) suggest that there is no need to truncate PCs because the 
t test in a regression model will identify the significant PCs. 
Other authors [McCuen, 1985; Cook and Kairiukstis, 1989; 
Fritts, 1991] prefer to truncate PCs based on the assumption 
that the final PCs represent variations that belong to small- 
scale features. It is assumed that these PCs do not increase the 

overall skill of the model. 

Several truncation procedures have been developed for 
identifying the significant modes from a PCA. For PCA-based 
dendroclimatic reconstructions, a list of the most commonly 
used procedures is given by Fritts [1991]. In the present study, 
the critical eigenvalue rule [Kaiser, 1958] is used for PCs rota- 
tion. The critical eigenvalue rule keeps only the PCs that have 
an eigenvalue -> 1 (corresponding to the amount of information 
contained in a single variable). A PC with an eigenvalue <1 is 
not considered to be significant. 
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Figure 3. Schematic of the eight different modeling approaches investigated in this study. All models are 
tested using the cross-validation standard error (CVSE). 

3.2. Stepwise Regression and Principal Component 
Selection 

After the truncation of PCs, stepwise regression is used to 
select which PCs will be part of the final regression model 
[Haan, 1977; Cureton and DMgostino, 1983]. SJ used this type 
of selection on the original reconstruction of the Upper Col- 
orado River streamflow. 

An undesirable effect of stepwise regression is that it allows 
selection of nonconsecutive PCs (GA). For example, the first, 
second, fifth, and tenth PCs could be selected for a regression 
model according to stepwise regression procedures. The skip- 
ping of PCs may result in regression coefficients for some of 
the original predictor variables that have the opposite sign of 
their initial correlation with the predictand. A model of this 
type may give results that are neither consistently accurate over 
time nor conceptually acceptable. Skipping PCs also suggests 
that there are major modes of variability in the data set that are 
unrelated to the dependent regression variable. If this is the 
case, it would be preferable for the variables that represent this 
variability to be removed from the analysis. 

3.3. Alternative Procedure for Principal Component 
Selection 

GA, based on McCuen [1985], gives an alternative procedure 
to stepwise regression for PCs selection. This procedure results 
in a more parsimonious model that better represents the phys- 
ical system and has better predictive skill than a model created 
using stepwise regression. This procedure uses the t test and a 
"sign test" as the criteria for retaining variables. The t test is 
used to test the significance of the coefficient of the PC in the 
regression equation. The sign test is passed if the algebraic 
signs of the regression coefficients of the PCs expressed in 
terms of the original variables match the algebraic signs of the 
correlation coefficients (correlation criterion in Table 1) of 
these original variables with the dependent variable. 

The following summarizes the alternative procedure for PC 
selection. First, test PC1 using a t test. If PC1 passes the t test, 
compute the regression coefficients in terms of the original 
variables and perform a sign test. If both the t test and sign test 
are passed, then accept PC1. Next, test PC2, as skipping PCs is 

not allowed. If PC2 does not pass the t test, then only retain 
PC1, and the procedure is finished. If PC2 passes the t test and 
if the regression coefficients in terms of the original variables 
using PC1 and PC2 in the model pass the sign test, then 
continue and test PC3. If PC2 passes the t test but fails the sign 
test, retain PC2 temporarily and test PC3. Then, if PC3 fails 
the t test, only retain PC1 in the final model. If PC3 passes the 
t test and if the sign test passes, then continue and test PC4, 
and so on. The procedure continues until the next PC does not 
pass the t test and the addition of this PC to the model causes 
the sign test to fail. 

3.4. Rotation of Principal Components 

Rotation is a procedure intended to simplify interpretation 
of PCs or placing physical significance to the PCs easier. A 
thorough discussion of reasons for rotation of PCs is given by 
Richman [1986]. In this study, both rotated and unrotated PCA 
are presented and compared. The method of rotation used 
here was programmed with Matlab software version 5.0 based 
on the Varimax criterion for factor rotation [Kaiser, 1958] and 
includes the modifications suggested by Nevels [1986] and 
ten Berge [1995]. 

4. Independent Testing Using Cross Validation 
There is a growing body of research that suggests that inde- 

pendent testing techniques can improve the overall accuracy of 
a regression model [Jackson and Chan, 1980; Michaelsen, 1987; 
Elsher and Schmertmann, 1994; Shao and Tu, 1995; GA]. One 
of these techniques is minimization of the cross-validation 
standard error (CVSE) [Michaelsen, 1987]. CVSE has been 
used by GA to select models with better predictive skill and is 
defined as 

n 

• (Yi- .,•(i))2 
i=1 

CVSE = (1) 
n-p ' 

where y• is the observed streamflow for year i; •(•) is the fitted 
response of the i th year computed from the fit with the i th 
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observation removed, n is the number of years in the data set, 
and p is the number of regression coefficients. 

The CVSE is used as an objective measure to optimize the 
different PCA-based models shown in Figure 3. The algorithm 
used for variable selection for each of the alternative models 

for Figure 3 is shown in Figure 4. This algorithm determines 
the model as well as the subset of tree ring variables that has 
the highest skill (lowest CVSE). First, the algorithm finds the 
lowest CVSE for each predictor independently. Next, the low- 
est CVSE for the two variables combination is found. The 

procedure is continued up to the total number of variables. If 
the minimum CVSE for combinations with an added variable 

is larger than the previous minimum CVSE, the program is 
stopped, and the extra variable is not included. This search 
procedure is similar to the one used by GA; although it may 
not necessarily find the global optimum of all combinations of 
variables, it rewards near-optimal parsimonious models. 

For the models that used unrotated PCs, an optimum subset 
of tree ring variables was found that minimized the CVSE. An 
independent optimization for the rotated PCs could not be 
performed because the estimated time to compute the results 
was prohibitively long when the rotation subroutines were in- 
cluded. Instead, a special logic for selection of the subsets of 
variables to be tested for rotated components was developed. 
The rotated PCA-based models start by testing the variables 
that minimized the corresponding unrotated solution, keeping 
the other alternatives fixed. That is, the CVSE was calculated 
for models B, D, F, and H using the variables identified in 
models A, E, C, and G, respectively. Additional rotated models 
were tested by adding up the remaining variables one at a time 
to this basic subset. If the CVSE of the model with the addi- 

tional variable is larger than with the basic set of variables, then 
no variable is added. Additionally, starting from the basic set 
again, rotated models were tested by exploring changing one 
up to the four of the last variables of the set (constraint dic- 
tated by computing time) while keeping the rest of the basic 
set. For example, for model F, the basic set would be the 
variables from model E: 17, 16, 14, 13, and 5 (Table 2). Addi- 
tional models were tested to compute the CVSE by changing 
(or deleting) the last four chronologies of the set. In other 
words, we evaluated the models that result from the combina- 
tion of variable 17 with all remaining combinations from one to 
four variables. 

5. Results 

5.1. Cross-Validation Standard Error 

The results of the models identified in Figure 3 are pre- 
sented in Table 2. The CVSE is compared with other verifica- 
tion statistics (explained in section 5.2) commonly used for tree 
ring reconstruction models [Fritts, 1991]. The PCs and the 
variables that are used to form the different PCs are also 

shown. There are a total of 17 possible variables in this section, 
which correspond to the number of tree ring sites. The "com- 
plete" model (using all variables) is shown as a comparison 
with more parsimonious models for each of the alternative 
procedures. In all cases, the complete model had a higher 
CVSE than the other models, showing that the inclusion of 
more variables does not necessarily improve the predictive skill 
of the model. 

All models based on the GA approach were found to retain 
only the first PC. This suggests that the size of the UCRB is 
small enough that the climate signal common to all variables 

belongs to a single climate regime that influences most of the 
basin. In contrast, the stepwise regression method selected one 
to four PCs. It should be noted that the correlation coefficients 

are similar for both approaches. 
Truncation of the PCs did not influence the models based on 

the GA approach because this type of model used only the first 
PC. For stepwise regression, however, better results are ob- 
tained when all the PCs (i.e., no truncation) are considered in 
the model. The best models using the GA methodology are 
obtained by using unrotated PCs. In contrast, the stepwise 
regression approach gives better results using untruncated ro- 
tated PCs. This is logical since the rotation of the PCs distrib- 
utes the variance of the original time series more equally 
among the PCs. The unrotated solution has a large portion of 
the variance in the first PC, and the amount of variance in the 
following PCs drops off much faster than in the rotated solu- 
tion. The rotation of PCs diminishes the high contribution 
placed on the first PC, and this affects the GA approach, which 
favors the first PC. The opposite effect is observed in the 
stepwise regression selection, which gives importance to some 
of the latter PCs. 

The untruncated rotated stepwise regression model (F in 
Table 2) has the lowest CVSE (2590.34 million m3/yr) among 
all the models, although it is not the most parsimonious model 
(Table 2). The method suggested by GA selected the model 
with the fewest variables (one less variable than the stepwise 
regression) and had a CVSE just slightly higher (2659.42 mil- 
lion m3/yr) than the best stepwise regression model (2590.34 
million m3/yr). 

5.2. Other Validation Statistics 

Table 2 shows other validation statistics that are commonly 
used in dendroclimatology studies. Similar to the CVSE, the 
reduction of error (RE) statistic [Lorenz, 1956; Gordon and 
LeDuc, 1981; Fritts, 1976, 1991] is a verification tool that is 
used on independent data to assess the data's reliability. RE 
varies from negative infinity (infinite error) to 1.0 (perfect 
estimation). Any positive value of RE indicates some skill of 
the model compared to a model that uses the calibration mean 
as the estimate. Negative RE statistics indicate that improve- 
ments are needed in the model. 

The reduction of error statistic is usually divided into three 
PCs: 

RE = RISK + BIAS + COVAR, (2) 

where "RISK," "BIAS," and "COVAR" are defined by Gor- 
don and LeDuc [1981] and Fritts [1991]. 

RISK is always negative (ideally, RISK = -1) and repre- 
sents the lower limit of RE, below which the regression recon- 
structions will exhibit no skill at all in reproducing the varia- 
tions in physical data. It denotes the risk that the model takes 
in making independent estimates. Models with small explained 
variance will characteristically have RISK terms between -0.5 
and 0.0, while overrepresented models (too many predictors) 
will usually have RISK terms smaller than -1 [Gordon and 
LeDuc, 1981]. 

BIAS can be positive or negative. It is positive if a shift in the 
mean of the independent sample (in our case the estimates 
from the deleted-one series) from the calibration sample is 
reproduced in the estimates. This term of the RE is of partic- 
ular interest for small sample sizes. 

The COVAR term reflects the strength of the correlation 
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Figure 4. The algorithm used for identification of the opti- 
mal model parameters. Given: X(1 ... N, 1 ... p), predictor 
variables matrix, where p is the maximum number of predictor 
variables and N is the number of years. Y: predictand variable 
matrix, Y(1 ... N, 1). NM is number of different models, in 
this case the eight models shown in Figure 3. CVSE is cross- 
validation standard error. Note that the best variable subset 

combination is the one that minimized CVSEi_ •. 

between the estimated and the observed data and measures the 

similarity of the temporal patterns in the estimates and obser- 
vations [Fritts, 1991]. It is usually the most important factor of 
RE. 

Dividing RE in this way aids in identifying the limitations of 
the models, especially the ones with negative RE. For example, 
models with a good correlation with the independent data but 
with a small RISK term suggest that the model may duplicate 
the patterns of variation but contain no appreciable amount of 
variance [Gordon and LeDuc, 1981]. 

The results in Table 2 show that the RE is not as sensitive for 

model selection as the CVSE when the verification data is 

represented by the estimates from the deleted-one (equation 
(1)) streamflow series. RE gives a coarse estimation of which 
models perform better, but it may be more valuable for cases 
where a longer calibration verification period is used (boot- 
strap) or in cases where the differences between models are 
more evident. 

The Cp statistic [Mallows, 1973] for variable subset evalua- 
tion is also included in Table 2. The best models have the 

lowest Cp, and its relative value is dependent on the choice of 
the estimate for the real error variance. We used the residual 

mean square of the model using all predictors for the estimate 
of the error variance. On the basis of the definition of Cp, if n 
is relatively large, small subsets of variables (p small) may 
result in valid negative values of Cp. The Cp statistic and 
CVSE both reward a parsimonious model and a more efficient 
variable set for prediction. However, the Cp statistic showed 
more variability than CVSE. It is encouraging that both Cp and 
CVSE identify the same optimal model using the PCs selection 
procedure of section 3.3 (GA). For the stepwise approach, Cp 
and CVSE have different minima, with Cp preferring a step- 
wise model that does not skip PCs, based on the same princi- 
ples discussed in section 3.2. 

5.3. Comparison With Stockton and Jacoby's [1976] 
Previous Reconstruction 

An untruncated, unrotated PCA model using the PCs selec- 
tion procedure described in section 3.3 was used to reconstruct 
Lee's Ferry streamflow and to compare it with the reconstruc- 
tion done by SJ with a stepwise regression model that allowed 
skipping of PCs. The PCs were computed for a calibration 
period from 1914 to 1963. The calibrated models use lagged 
(-1, 0, +1, +2) chronologies, so that all 68 variables (17 
chronologies times the 4 lag times) were treated as separate 
variables. The subset of chronologies that resulted in the low- 
est CVSE was found using the algorithm of Figure 4. 

The results of the model developed in this study are pre- 
sented in Table 3. A comparison between the streamflow re- 
constructions from the traditional stepwise regression model 
and the model formed with the procedures from this study is 
shown in Figure 5. 

The use of lag chronologies required a modification to the 
CVSE criterion as suggested by Meko [1997]. When making an 
independent prediction for year i, the three lag years (i - 2, 
i - 1, and i + 1) are deleted in addition to the ith year. This 
procedure is repeated for each ith year, ensuring a truly inde- 
pendent test. 

The chronologies selected as the best streamflow predictors 
from the model using the Garen [1992] approach are noted 
below in the regression equation. In terms of the PCs, the final 
calibration equation is 

Q = 3098.91 PC1 + 16030.13, (3a) 
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Table 2. Summary of the Results for the Models Identified in Figure 3 

CVSE, EXP. RMSE, 
PCs x106 m 3 VAR. Cp x106 m 3 RISK BIAS COVAR RE Variables 

Model A: Stepwise and Unrotated 
1 3189.82 0.734 5.59 2692.72 -1.002 1.892 0.085 0.975 17, 14, 13 
1 3941.02 0.640 36.53 3135.54 -0.976 1.861 0.088 0.973 1-17 

Model B: Stepwise and Rotated 
1, 2 2640.91 0.790 2.99 2421.35 -0.987 1.859 0.111 0.983 17, 14, 13, 6 
2, 4, 8 4013.79 0.744 56.58 2702.59 -1.001 1.876 0.097 0.972 1-17 

Models C and G: Garen [1992] and Unrotated 
1' 2659.42* 0.771' -4.77* 2500.29* -0.983* 1.857' 0.109' 0.983* 17', 14,* 13' 
1 3770.79 0.680 38.06 2956.69 -0.979 1.861 0.093 0.975 1-17 

Models D and H: Garen [1992] and Rotated 
1 3189.82 0.734 5.59 2692.72 -1.002 1.892 0.085 0.975 17, 14, 13 
1 3941.02 0.640 36.53 3135.54 -0.976 1.861 0.088 0.973 1-17 

Model E: Stepwise and Unrotated 
1, 3 2591.57 0.798 6.46 2372.01 -0.985 1.857 0.112 0.984 17, 16, 14, 13, 5 
1, 5 3863.31 0.722 47.56 2785.23 -0.979 1.854 0.099 0,974 1-17 

Model F: Stepwise and Rotated 
1, 3* 2590.34* 0.795* 13.52' 2390.51' -0.987* 1.860' 0.111' 0.984* 17,* 14,* 13,* 6* 
2, 4, 9, 13 3704.19 0.806 63.82 2375.71 -0.976 1.847 0.105 0.976 1-17 

PCs are the principal components included in each model. CVSE is the cross-validation standard error in million cubic meters per year. EXP. 
VAR. is the explained variance (coefficient of determination). Cp is the Cp statistic for subset evaluation [Mallows, 1973]. RMSE is the 
root-mean-square error in million cubic meters per year. RISK BIAS, and COVAR are the constituents of RE, which is the reduction of error 
statistic [Fritts, 1991]. Variables are the chronologies used in the reconstruction model. Nonsignificant components were truncated from models 
A to D, while in models E to H, no truncation was performed. Model C gave the same results as model G, so they are shown together; the same 
applies for models D and H. The first row of each model represents the combination of variables that resulted in the lowest CVSE using that 
particular type of model. The second row of each model represents the results using all 17 variables. 

*These data show the best model for the GA and the stepwise component selection. 

where PC1 is the PC for the six chronologies identified as the 
best predictors. In terms of the original variables, 

Q = 660.04 CC + 880.72 NN + 643.39 UG 

+ 1191.80 NM + 1377.44 UM + 2297.51 EE 

+ 1377.44 UM + 2297.51 EE + 1377.44 UM 

+ 2297.51 EE + 1377.44 UM + 2297.51 EE 

+ 1377.44 UM + 2297.51 EE + 16030.13, (3b) 

where Q is the reconstructed annual natural streamflow at 
Lee's Ferry in million cubic meters and the other abbreviations 
represent the standardized tree ring growth index for CC, 
Chicago Creek (site 3) at lag + 1; NN, New North Park (site 4) 
at lag -1; UG, Upper Gunnison (site 8) at lag + 1; NM, Nine 
Mile Canyon (site 12) at lag 0; UM, Unita Mountains site D 
(site 14) at lag 0; EE, Eagle East (site 17) at lag 0. 

As expected, the sites selected are located in the upper part 

of the Colorado River Basin, where the runoff yield is high. It 
should be noted that the very high yield sites in the upper part 
of the Green River, Wyoming, (sites 2, 5, and 7) were not 
selected by the model over the sites in the upper part of the 
state of Colorado (sites 3 and 4). One reason may be that the 
tree species is playing some role in the identification of the best 
chronologies for streamflow reconstruction in this particular 
region. In general, the Pseudosoga mensiesii and Pinus edilus 
are preferred over Pinus flexills and Picea engelmannii. 

The SJ model used six PCs that were not consecutive. It is 
encouraging that our coefficient of determination and the es- 
timate of the root-mean-square error (Table 3) for the cali- 
bration over the years 1914-1961 showed that our model has a 
better fit. Moreover, the six PCs used in the SJ study are 
composed of 68 variables (representing 17 tree ring chronolo- 
gies times 4 lags), and there may be some duplicate informa- 
tion that artificially inflates the real predictive skill of the 
model. 

Table 3. Comparison of Statistical Characteristics Between the Model Presented in This Study and Stockton and Jacoby 
[1976] Reconstruction of th e Colorado River Streamflow at Lee's Ferry 

PCs Var. CVSE, EXP. RMSE, 
Model Used Used X10 6 m 3 VAR. x10 6 m 3 RISK BIAS COVAR RE 

This study 1 6 2344.87 0.824 2158.62 -0.982 1.86 0.109 0.987 
50 year calibration model by 1, 2, 3, 5, 10, 15 68 n.a. 0.740 4711.95 n.a. n.a. n.a. n.a. 

Stockton and Jacoby [1976] 

PCs are the principal components included in each model. Var. Used are the number of variables used in each model. CVSE is the 
cross-validation standard error in million cubic meters per year. EXP. VAR. is the explained variance (coefficient of determination). RMSE is 
the root-mean-square error in million cubic meters per year. RISK, BIAS, and COVAR are the constituents of RE, which is the reduction of 
error statistic [Fritts, 1991]. Unavailable information is denoted by n.a. 
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Figure 5. Comparison of the reconstruction results obtained 
using the Stockton and Jacoby [1976] approach and the model 
from this study. Annual streamflow is expressed in billion cubic 
meters at Lee's Ferry. 

In Figure 5 it is clear that our model responds with more 
intensity to below average streamflow (droughts) than the SJ 
model. It is encouraging that both reconstructions show that 
the lowest streamflow occurred in the 1590s, 1670s, and 1780s. 
In addition, an extended low-flow period occurred from the 
1880s to the 1910s. This suggests a near-centennial return 
period of extreme drought events in this region. There is also 
an evidence of a drought in the early 1500s that is similar in 
magnitude to the drought in the late 1500s, which is considered 
the most severe drought for water allocation in the basin [Tar- 
boton, 1995]. However, this apparent drought is not as reliable 
as later droughts since the early periods of reconstructions are 
usually obtained from chronologies composed of small samples 
of trees to guarantee accurate results [Fritts, 1991]. 

5.4. Characteristics of the Best Predictors 

Table 4 shows some statistical characteristics of the chronol- 

ogies selected by the model as the best streamflow predictors. 
Except for the mentioned preference of certain tree species 
and the correlation with streamflow, individual chronologies 
do not present conclusive characteristics that can be used to 
infer their potential as good streamflow predictors. Even the 
correlation with streamflow does not imply a very strong rela- 
tionship. In fact, some of the predictors have correlation co- 
efficients with the streamflow data series as low as 0.30. Vari- 

ables with a modest correlation with the dependent variable 
may contain additional information not contained in other 
variables with better correlation. Variable selection is deter- 

mined by a balance between correlation with the dependent 
variable and intercorrelation among the independent variables. 

6. Conclusions 

The comparison of PCA-based regression techniques pre- 
sented in this paper is intended to provide insights to the 
relative accuracy of these models for streamflow reconstruc- 
tion using tree ring data. Garen's [1992] methodology for PCs 
selection resulted in the most parsimonious models, having a 
low CVSE. This method also produces models that are more 
physically consistent than those calibrated using stepwise re- 
gression. In stepwise regression the undesirable effect of PCs 
skipping can lead to regression coefficients that are opposite in 
sign to the physical relationship between the predictor and 
predictand. It was also found that the minimization of the 
CVSE is a good tool for determining the most parsimonious 
model, with a low root-mean-square error (RMSE), while re- 
maining consistent with the underlying physical processes. 

A comparison of the optimized model in this study with that 
of the SJ reconstruction of Lee's Ferry streamflow shows that 
both models identify the same dry periods; however, the model 
developed in this study estimates with more intensity the ex- 
treme dry periods. It is not clear whether the approach sug- 
gested here is superior to the traditional stepwise regression 
approach; however, the differences in the streamflow recon- 
struction that each approach gives is worthy of additional 
study. These differences may be very important for the future 
allocation of water supply in the Colorado River Basin. 

Future work will seek to find more computationally efficient 
procedures for identifying the best variables to be used in the 
model. Instead of evaluating all possible variable combina- 
tions, the prior information from an analysis of fewer variables 
may be useful in determining the best predictor variables. Last, 
it is noteworthy that we have found that the hydrologic data 
sets in the UCRB show evidence that the climate regime of the 
post-1976 period is different than the pre-1976 period, a shift 
that has been observed by researchers in other regions around 
the Pacific Rim [e.g., Ebbesmeyer et al., 1991; Graham, 1994; 
Miller et al., 1994; Mantua et al., 1997]. It is imperative to 
update tree ring chronologies so all possible climate scenarios 
are captured in the tree ring data. This may significantly affect 

Table 4. Statistical Characteristics of the Chronologies Used in the Model Selected With the Garen [1992] Approach 
Having the Lowest Cross-Validation Standard Error 

Tree Rings 

Nine Mile Unita Eagle New North Chicago 
Canyon, Mountains East, Park, Creek, 
Lag 0 D, Lag 0 Lag 0 Lag -1 Lag + 1 

Upper 
Gunnison, 

Lag + 1 

Lag +1 autocorrelation 0.16 0.47 0.11 0.23 0.12 -0.13 
Correlation with streamflow 0.64 0.70 0.79 0.32 0.30 0.35 
Mean 1.30 1.04 1.03 1.09 1.24 1.09 
Standard deviation 0.44 0.34 0.26 0.27 0.38 0.34 

Mean sensitivity 0.46 0.33 0.35 0.28 0.38 0.43 
Standard deviation/mean 0.34 0.33 0.25 0.25 0.31 0.31 

Streamflow Lee's Ferry 

Lag + 1 autocorrelation 0.30 
Mean, x10 6 m 3 18497.06 
Standard deviation, x106 m 3 5090.59 
Mean sensitivity 0.28 
Standard deviation/mean 0.28 

Lee's Ferry natural streamflow statistics are also shown for comparison purposes. 
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the identification of severe drought periods as represented in 
reconstructed streamflow data. 
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