Now showing items 102-121 of 153

    • Quadratic Hamiltonians in phase-space quantum mechanics 

      Gadella, Manuel; Gracia Bondía, José M.; Nieto, Luis M.; Várilly Boyle, Joseph C. (1989-07)
      The dynamical evolution is described within the phase-space formalism by means of the Moyal propagator, which is the symbol of the evolution operator. Quadratic Hamiltonians on the phase space are distinguished in that ...
    • Regularization of cylindrical processes in locally convex Spaces 

      Fonseca Mora, Christian Andrés (2020-12-15)
      Let Φ be a locally convex space and let Φ′ denote its strong dual. In this paper, we introduce sufficient conditions for the existence of a continuous or a càdlàg Φ′-valued version to a cylindrical process defined on Φ′. ...
    • Las representaciones metapléctica y de espín de ciertos grupos de simetría: un estudio comparativo 

      Naranjo Alvarado, Adrián José (2021-09)
      Los espacios de Fock son una construcción algebraica utilizada en mecánica cuántica para construir el espacio de estados cuánticos de un número desconocido de partículas idénticas a partir de una sola partícula, que ...
    • Resolución de la ecuación de tercer grado por aproximaciones sucesivas 

      Alarcón Athens, Winston (1990)
      Se presenta un método numérico iterativo para encontrar las raíces reales de la ecuación de tercer grado reducida x^3 + Bx + C = 0. El método no requiere partir con un cálculo aproximado de la raíz. Las fórmulas de recurrencia ...
    • Resolución de problemas matemáticos en GeoGebra 

      Poveda Fernández, William Enrique (2020)
      En este artículo se analizan y discuten las ventajas y oportunidades que ofrece GeoGebra durante el proceso de resolución de problemas. En particular, se analizan y documentan las formas de razonamiento matemático exhibidas ...
    • Una retrospección a la matemática griega 

      Várilly Boyle, Joseph C. (2000-12-01)
      Este artículo apareció originalmente en la revista cultural semestral Laberintos, publicado por el Instituto de Enseñanza Superior ÉLAIOS, de Zaragoza, en un número dedicado al Año Mundial de las Matemáticas (2000). ...
    • REVISTA SERENGUETI 1(2) 

      Valerio Salas, Ericka; García Calvo, Susana; Vargas Montero, Andrea; Salas Obando, Joshua; Aguilar Umaña, José Pablo; Alvarado Prado, Fernando; Hernández Orama, Daniely; Chavarría Guevara, Daniela; Jiménez Mena, Noelia; Zarate Artavia, Gabriel; Herrera Delgado, Shirley; Rojas Ramírez, Noelia; Solís Quirós, María José; Quirós Gómez, Luis Diego; Montero Solórzalo, Juan José; Solera Vázquez, Silvia; Gómez Quesada, Dayana; Reyes Peña, Jesús; Fallas Godìnez, José Alejandro; Vargas Herrera, Moisés (2019-12)
      Se destaca, de manera general, que la revista Serengueti se compone como una herramienta capaz de incentivar la participación estudiantil, en el cual principalmente se tiene como fin evidenciar y reconocer los esfuerzos ...
    • REVISTA SERENGUETI 2(1) 

      Rojas Araya, Emir; Rodríguez Rodríguez, Marielle; Céspedes Zamora, Fernando; Campos Jiménez, Pedro; Quirós Barrantes, Steven; Venegas González, Maripaz; Leandro Aguilar, Carlos Daniel; Baltodano Leiva, Josué; Salazar Obando, Joshua; Vargas Montero, Andrea; Jaikel Jiménez, Juan José; Aguilar Umaña, José Pablo; Alvarado Prado, Fernando; Madrigal Sanabria, Julio; Torres Chávez, Nelson; Castrillo Gómez, Mónica; Flores Ramírez, José; Chacón Rojas, Manrique; Alfaro Picado, Andrea; Arroyo Arroyo, Alcides; Hernández Orama, Daniely (2020)
      En los últimos años, el estudiantado del Bachillerato en Estadística de nuestra escuela ha realizado trabajos con múltiples técnicas estadísticas, que se aplican a diversas áreas del conocimiento. Darnos cuenta de la riqueza ...
    • Rotation-Based Mixed Formulations for an Elasticity-Poroelasticity Interface Problem 

      Anaya Domínguez, Verónica; De Wijn, Zoa; Gómez Vargas, Bryan Andrés; Mora Herrera, David; Ruiz Baier, Ricardo (2020)
      In this paper we introduce a new formulation for the stationary poroelasticity equations written using the rotation vector and the total fluid-solid pressure as additional unknowns, and we also write an extension to the ...
    • Semigrupos dinámicos y las ecuaciones de Bloch en sistemas abiertos finitos 

      Várilly Boyle, Joseph C. (1981-07)
      En la Mecánica Estadística sin equilibrio, se suele derivar las ecuaciones de transporte de un sistema abierto del requisito que tal sistema forma parte de un gran sistema dinámico conservativo cerca del equilibrio. Las ...
    • Semimartingales on Duals of Nuclear Spaces 

      Fonseca Mora, Christian Andrés (2020-03-26)
      This work is devoted to the study of semimartingales on the dual of a general nuclear space. We start by establishing conditions for a cylindrical semimartingale in the strong dual Φ′ of a nuclear space Φ to have a Φ′-valued ...
    • Some remarks on dilating semigroups of completely positive mappings 

      Emch, Gérard Gustav; Várilly Boyle, Joseph C. (1980-08)
      We reconsider the problem of embedding a dissipative dynamical system in a conservative one; and we compare some of the partial solutions which have been recently proposed.
    • Sparse bounds for Bochner–Riesz multiplers 

      Lacey, Michael T.; Mena Arias, Darío Alberto; Reguera, Maria Carmen (2019)
      The Bochner–Riesz multipliers are shown to satisfy a range of sparse bounds. The range of sparse bounds increases to the optimal range, as δ increases to the critical value, even assuming only partial information on the ...
    • Sparse bounds for the discrete spherical maximal functions 

      Kesler, Robert; Lacey, Michael T.; Mena Arias, Darío Alberto (2020)
      We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and ...
    • Stability analysis for a new model of multi-species convection-diffusion-reaction in poroelastic tissue 

      De Oliveira Vilaca, Luis Miguel; Gómez Vargas, Bryan Andrés; Kumar, Sarvesh; Ruiz Baier, Ricardo; Verma, Nitesh (2020)
      We perform the linear stability analysis of a new model for poromechanical processes with inertia (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing and ...
    • Stability and finite element approximation of phase change models for natural convection in porous media 

      Woodfield, James; Álvarez Guadamuz, Mario Andrés; Gómez Vargas, Bryan Andrés; Ruiz Baier, Ricardo (2019-11)
      In this paper we study a phase change problem for non-isothermal incompressible viscous flows. The underlying continuum is modelled as a viscous Newtonian fluid where the change of phase is either encoded in the viscosity ...
    • Stability of a second-order method for phase change in porous media flow 

      Álvarez Guadamuz, Mario Andrés; Gómez Vargas, Bryan Andrés; Ruiz Baier, Ricardo; Woodfield, James (2018)
      We analyse the stability of a second-order finite element scheme for the primal formulation of a Brinkman-Boussinesq model where the solidification process influences the drag and the viscosity. The problem is written in ...
    • Stark units and special Gamma values 

      Barquero Sánchez, Adrián Alberto; Masri, Riad; Tsai, Wei-Lun (2021)
      In this paper we develop an effective procedure for expressing Stark units in real quadratic extensions of totally real fields as values of the Barnes multiple Gamma function at algebraic points. This procedure is used to ...
    • Stora's fine notion of divergent amplitudes 

      Várilly Boyle, Joseph C.; Gracia Bondía, José M. (2016-11)
      Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of ...
    • Stratifications on the Moduli Space of Higgs Bundles 

      Zúñiga Rojas, Ronald Alberto; Beier Gothen, Peter (2016-11-02)
      The moduli space of Higgs bundles has two stratifications. The Bia lynickiBirula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises ...