Now showing items 111-130 of 153

    • Semigrupos dinámicos y las ecuaciones de Bloch en sistemas abiertos finitos 

      Várilly Boyle, Joseph C. (1981-07)
      En la Mecánica Estadística sin equilibrio, se suele derivar las ecuaciones de transporte de un sistema abierto del requisito que tal sistema forma parte de un gran sistema dinámico conservativo cerca del equilibrio. Las ...
    • Semimartingales on Duals of Nuclear Spaces 

      Fonseca Mora, Christian Andrés (2020-03-26)
      This work is devoted to the study of semimartingales on the dual of a general nuclear space. We start by establishing conditions for a cylindrical semimartingale in the strong dual Φ′ of a nuclear space Φ to have a Φ′-valued ...
    • Some remarks on dilating semigroups of completely positive mappings 

      Emch, Gérard Gustav; Várilly Boyle, Joseph C. (1980-08)
      We reconsider the problem of embedding a dissipative dynamical system in a conservative one; and we compare some of the partial solutions which have been recently proposed.
    • Sparse bounds for Bochner–Riesz multiplers 

      Lacey, Michael T.; Mena Arias, Darío Alberto; Reguera, Maria Carmen (2019)
      The Bochner–Riesz multipliers are shown to satisfy a range of sparse bounds. The range of sparse bounds increases to the optimal range, as δ increases to the critical value, even assuming only partial information on the ...
    • Sparse bounds for the discrete spherical maximal functions 

      Kesler, Robert; Lacey, Michael T.; Mena Arias, Darío Alberto (2020)
      We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and ...
    • Stability analysis for a new model of multi-species convection-diffusion-reaction in poroelastic tissue 

      De Oliveira Vilaca, Luis Miguel; Gómez Vargas, Bryan Andrés; Kumar, Sarvesh; Ruiz Baier, Ricardo; Verma, Nitesh (2020)
      We perform the linear stability analysis of a new model for poromechanical processes with inertia (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing and ...
    • Stability and finite element approximation of phase change models for natural convection in porous media 

      Woodfield, James; Álvarez Guadamuz, Mario Andrés; Gómez Vargas, Bryan Andrés; Ruiz Baier, Ricardo (2019-11)
      In this paper we study a phase change problem for non-isothermal incompressible viscous flows. The underlying continuum is modelled as a viscous Newtonian fluid where the change of phase is either encoded in the viscosity ...
    • Stability of a second-order method for phase change in porous media flow 

      Álvarez Guadamuz, Mario Andrés; Gómez Vargas, Bryan Andrés; Ruiz Baier, Ricardo; Woodfield, James (2018)
      We analyse the stability of a second-order finite element scheme for the primal formulation of a Brinkman-Boussinesq model where the solidification process influences the drag and the viscosity. The problem is written in ...
    • Stark units and special Gamma values 

      Barquero Sánchez, Adrián Alberto; Masri, Riad; Tsai, Wei-Lun (2021)
      In this paper we develop an effective procedure for expressing Stark units in real quadratic extensions of totally real fields as values of the Barnes multiple Gamma function at algebraic points. This procedure is used to ...
    • Stora's fine notion of divergent amplitudes 

      Várilly Boyle, Joseph C.; Gracia Bondía, José M. (2016-11)
      Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of ...
    • Stratifications on the Moduli Space of Higgs Bundles 

      Zúñiga Rojas, Ronald Alberto; Beier Gothen, Peter (2016-11-02)
      The moduli space of Higgs bundles has two stratifications. The Bia lynickiBirula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises ...
    • Stratifications on the Nilpotent Cone of the moduli space of Hitchin pairs 

      Beier Gothen, Peter; Zúñiga Rojas, Ronald Alberto (2020)
      We consider the problem of finding the limit at infinity (corresponding to the downward Morse flow) of a Higgs bundle in the nilpotent cone under the natural C ∗ -action on the moduli space. For general rank we provide ...
    • String chopping and time-ordered products of linear string-localized quantum fields 

      Cardoso, Lucas T.; Mund, Jens; Várilly Boyle, Joseph C. (2018-03)
      For a renormalizability proof of perturbative models in the Epstein-Glaser scheme with string-localized quantum fields, one needs to know what freedom one has in the definition of time-ordered products of the interaction ...
    • Sums over paths adapted to quantum theory in phase space 

      Gracia Bondía, José M.; Várilly Boyle, Joseph C. (1986)
      The concept of phase space plays a decisive role in the study of the transition from classical to quantum physics. This is particularly the case in areas such as nonlinear dynamics and chaos, geometric quantization and the ...
    • Sur l’existence du schéma en groupes fondamental 

      Antei, Marco; Emsalem, Michel; Gasbarri, Carlo (2020-06-06)
      Soient S un schéma de Dedekind, X un S-schéma connexe localement de type ni et x 2 X(S) une section. L’objet du présent papier est d’établir l’existence du schéma en groupes fondamental de X lorsque X est à bres réduites ...
    • Teoría de grupos en cuantización 

      Várilly Boyle, Joseph C. (Centro de Investigación y de Estudios Avanzados del IPN, México, DF, 1992, 1992-02-15)
      Esta monografía es un curso doctoral impartido en el CInvEstAv del Instituto Politécnico Nacional en México, DF, durante el año académico 1991-92 (con licencia sabática de la UCR) y luego redactado como publicación ...
    • Teorías y propiedades universales de una teoría de anillos real cerrados (Informe Final Proyecto B9128) 

      Guier Acosta, Jorge Ignacio (2021)
      Sea $T^\ast$ la teor\'{\i}a de los subanillos reticulados que son convexos en los $f$-anillos von Neumann regulares real cerrados, y que adem\'as no tienen elementos idempotentes minimales (no-cero) y que son divisible-p ...
    • The asymptotic distribution of Andrews’ smallest parts function 

      Banks, Josiah; Barquero Sánchez, Adrián Alberto; Masri, Riad; Sheng, Yan (2015-12)
      In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic ...
    • The chirality theorem 

      Gracia Bondía, José M.; Mund, Jens; Várilly Boyle, Joseph C. (2018-03)
      We show how chirality of the weak interactions stems from string independence in the string-local formalism of quantum field theory.
    • The Chowla-Selberg formula for abelian CM fields and Faltings heights 

      Barquero Sánchez, Adrián Alberto; Masri, Riad (2016-03)
      In this paper we establish a Chowla-Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular function at CM points to values of Euler’s gamma function Γ and an analogous function ...