Recent Submissions

  • Productos generalizados de funciones analíticas 

    Castillo Arias, Ileana; Várilly Boyle, Joseph C. (1990-09)
    Los productos generalizados son de interés en el formalismo de la mecánica cuántica en espacios de fases. En este artículo se analizan las propiedades algebraicas y topológicas de diversos productos definidos en espacios ...
  • A Multilayer Network Model implementation for COVID-19 

    Calvo Alpízar, Juan Gabriel; Sánchez Peña, Fabio Ariel; Barboza Chinchilla, Luis Alberto; García Puerta, Yury Elena; Vásquez Brenes, Paola Andrea (2021)
    We present a numerical implementation for a multilayer network to model the transmission of Covid-19 or other diseases with a similar transmission mechanism. The model incorporates different contact types between individuals ...
  • S-matrix from the metaplectic representation 

    Várilly Boyle, Joseph C.; Gracia Bondía, José M. (1992-03)
    We show how the S-matrix for bosons in an external field can be derived directly from the infinite dimensional metaplectic representation, in terms of the classical scattering operator.
  • Distinguished Hamiltonian theorem for homogeneous symplectic manifolds 

    Cariñena Marzo, José F.; Gracia Bondía, José M.; Ibort Latre, Luis Alberto; López, Carlos; Várilly Boyle, Joseph C. (1991-09)
    A diffeomorphism of a finite-dimensional flat symplectic manifold which is canonoid with respect to all linear and quadratic Hamiltonians preserves the symplectic structure up to a factor: so runs the "quadratic Hamiltonian ...
  • The Moyal representation of quantum mechanics and special function theory 

    Várilly Boyle, Joseph C.; Gracia Bondía, José M.; Schempp, Walter (1990-03)
    It is shown that the phase-space formulation of quantum mechanics is a rich source of special function identities. The Moyal formalism is reviewed for two phase spaces: the real plane and the sphere; and this is used to ...
  • El problema de los subespacios invariantes 

    Pearcy, Carl M.; Várilly Boyle, Joseph C. (1983-11)
    El Prof. Carl Pearcy, de la Universidad de Michigan en Ann Arbor, visitó la Escuela de Matemática en noviembre de 1983, y ofreció un minicurso de tres sesiones sobre el problema de los subespacios invariantes. Dicho problema ...
  • Moyal quantization with compact symmetry groups and noncommutative harmonic analysis 

    Figueroa, Héctor; Gracia Bondía, José M.; Várilly Boyle, Joseph C. (1990)
    The phase-space approach to quantization of systems whose symmetry group is compact and semisimple is developed from two basic principles: covariance and traciality. This generalizes results and methods already implemented ...
  • Stochastic integration in Hilbert spaces with respect to cylindrical martingale-valued measures 

    Alvarado Solano, Anddy Enrique; Fonseca Mora, Christian Andrés (2021)
    In this work we introduce a theory of stochastic integration for operator-valued integrands with respect to some classes of cylindrical martingale-valued measures in Hilbert spaces. The integral is constructed via the ...
  • Stochastic Integration With Respect to Cylindrical Semimartingales 

    Fonseca Mora, Christian Andrés (2021)
    In this work we introduce a theory of stochastic integration with respect to general cylindrical semimartingales defined on a locally convex space Φ. Our construction of the stochastic integral is based on the theory of ...
  • A multilayer network model of Covid-19: implications in public health policy in Costa Rica 

    Sánchez Peña, Fabio Ariel; Calvo Alpízar, Juan Gabriel; Mery, Gustavo; García Puerta, Yury Elena; Vásquez Brenes, Paola Andrea; Barboza Chinchilla, Luis Alberto; Pérez Rosales, María Dolores; Rivas, Tania (2022-05)
    Successful partnerships between researchers, experts, and public health authorities have been critical to navigate the challenges of the Covid-19 pandemic worldwide. In this collaboration, mathematical models have played ...
  • Algebras of distributions suitable for phase-space quantum mechanics. III. The dual space of the algebra L_b(S) 

    Gracia Bondía, José M.; Várilly Boyle, Joseph C.; Figueroa, Héctor (1989-09)
    The strong dual space of the topological algebra L_b(S), where S is the Schwartz space of smooth declining functions on R, may be obtained as an inductive limit of projective limits of Hilbert spaces. To that end, we ...
  • Las representaciones metapléctica y de espín de ciertos grupos de simetría: un estudio comparativo 

    Naranjo Alvarado, Adrián José (2021-09)
    Los espacios de Fock son una construcción algebraica utilizada en mecánica cuántica para construir el espacio de estados cuánticos de un número desconocido de partículas idénticas a partir de una sola partícula, que ...
  • The Stratonovich-Weyl correspondence: A general approach to Wigner functions 

    Várilly Boyle, Joseph C. (1989)
    A formalism is proposed for developing phase-space representations of elementary quantum systems under general invariance groups. Several examples are discussed, including the usual Weyl calculus, the Moyal formulation ...
  • On asymptotic expansions of twisted products 

    Estrada Navas, Ricardo; Gracia Bondía, José M.; Várilly Boyle, Joseph C. (1989-12)
    The series development of the quantum-mechanical twisted product is studied. The series is shown to make sense as a moment asymptotic expansion of the integral formula for the twisted product, either pointwise or in the ...
  • Phase-space representation for Galilean quantum particles of arbitrary spin 

    Gracia Bondía, José M.; Várilly Boyle, Joseph C. (1988-09)
    The phase-space approach to quantization is extended to incorporate spinning particles with Galilean symmetry. The appropriate phase space is the coadjoint orbit R^6 x S^2. From two basic principles, traciality and ...
  • Quadratic Hamiltonians in phase-space quantum mechanics 

    Gadella, Manuel; Gracia Bondía, José M.; Nieto, Luis M.; Várilly Boyle, Joseph C. (1989-07)
    The dynamical evolution is described within the phase-space formalism by means of the Moyal propagator, which is the symbol of the evolution operator. Quadratic Hamiltonians on the phase space are distinguished in that ...
  • The significance of physiologically structured models for fish stock dynamics 

    Gracia Bondía, José M.; Várilly Boyle, Joseph C. (1988)
    The present working document contains the initial papers of a series whose ultimate purpose is to provide a realistic basis for a fresh appraisal of both the surplus production and the dynamic pool approaches to fishery ...
  • Algebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebra 

    Várilly Boyle, Joseph C.; Gracia Bondía, José M. (1988-06-04)
    The topology of the Moyal *-algebra may be defined in three ways: the algebra may be regarded as an operator algebra over the space of smooth declining functions either on the configuration space or on the phase space ...
  • A posteriori error analysis of mixed finite element methods for stress-assisted diffusion problems 

    Gatica, Gabriel N.; Gómez Vargas, Bryan Andrés; Ruiz Baier, Ricardo (2022)
    We develop the a posteriori error analysis for mixed-primal and fully-mixed finite element methods approximating the stress-assisted diffusion of solutes in elastic materials. The systems are formulated in terms of stress, ...
  • Velocity‑vorticity‑pressure formulation for the Oseen problem with variable viscosity 

    Anaya Domínguez, Verónica; Caraballo, Rubén; Gómez Vargas, Bryan Andrés; Mora Herrera, David; Ruiz Baier, Ricardo (2021)
    We propose and analyse an augmented mixed finite element method for the Oseen equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and homogeneous Dirichlet boundary condition for the ...

View more