Show simple item record

dc.creatorMurillo Morera, Juan
dc.creatorQuesada López, Christian Ulises
dc.creatorJenkins Coronas, Marcelo
dc.description.abstractContext: Software fault prediction has been an important research topic in the software engineering field for more than 30 years. Software defect prediction models are commonly used to detect faulty software modules based on software metrics collected during the software development process. Objective: Data mining techniques and machine learning studies in the fault prediction software context are mapped and characterized. We investigated the metrics and techniques and their performance according to performance metrics studied. An analysis and synthesis of these studies is conducted. Method: A systematic mapping study has been conducted for identifying and aggregating evidence about software fault prediction. Results: About 70 studies published from January 2002 to December 2014 were identified. Top 40 studies were selected for analysis, based on the quality criteria results. The main metrics used were: Halstead, McCabe and LOC (67.14%), Halstead, McCabe and LOC + Object-Oriented (15.71%), others (17.14%). The main models were: Machine Learning(ML) (47.14%), ML + Statistical Analysis (31.42%), others (21.41%). The data sets used were: private access (35%) and public access (65%). The most frequent combination of metrics, models and techniques were: Halstead, McCabe and LOC + Random Forest, Naive Bayes, Logistic Regression and Decision Tree representing the (60%) of the analyzed studies. Conclusions: This article has identified and classified the performance of the metrics, techniques and their combinations. This will help researchers to select datasets, metrics and models based on experimental results, with the objective to generate learning schemes that allow a better prediction software failures.es_ES
dc.description.sponsorshipUniversidad de Costa Rica/[]/UCR/Costa Ricaes_ES
dc.description.sponsorshipMinisterio de Ciencia, Tecnología y Telecomunicaciones/[]/MICITT/Costa Ricaes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.source18th Conferencia Iberoamericana en Software Engineering (CIbSE 2015) Proceedings of a meeting held 22-24 April 2015, Lima, Perues_ES
dc.subjectFault prediction modelses_ES
dc.subjectSoftware metricses_ES
dc.subjectSoftware qualityes_ES
dc.titleSoftware Fault Prediction: A Systematic Mapping Studyes_ES
dc.typecontribución de congreso
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ciencias de la Computación e Informáticaes_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ingeniería::Centro de Investigaciones en Tecnologías de Información y Comunicación (CITIC)es_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional