Show simple item record

dc.creatorGimeno Presa, Luis
dc.creatorEiras Barca, Jorge
dc.creatorDurán Quesada, Ana María
dc.creatorDomínguez, Francina
dc.creatorvan der Ent, Ruud
dc.creatorSodemann, Harald
dc.creatorSánchez Murillo, Ricardo
dc.creatorNieto, Raquel
dc.creatorKirchner, James W.
dc.date.accessioned2021-11-23T19:35:20Z
dc.date.available2021-11-23T19:35:20Z
dc.date.issued2021-07-13
dc.identifier.citationhttps://www.nature.com/articles/s43017-021-00181-9
dc.identifier.issn2662-138X
dc.identifier.urihttps://hdl.handle.net/10669/85316
dc.description.abstractAtmospheric water vapour residence time (WVRT) is an essential indicator of how atmospheric dynamics and thermodynamics mediate hydrological cycle responses to climate change. WVRT is also important in estimating moisture sources and sinks, linking evaporation and precipitation across spatial scales. In this Review, we outline how WVRT is shaped by the interaction between evaporation and precipitation, and, thus, reflects anthropogenic changes in the hydrological cycle. Estimates of WVRT differ owing to contrasting definitions, but these differences can be reconciled by framing WVRT as a probability density function with a mean of 8-10 days and a median of 4-5 days. WVRT varies spatially and temporally in response to regional, seasonal and synoptic-scale differences in evaporation, precipitation, long-range moisture transport and atmospheric mixing. Theory predicts, and observations confirm, that in most (but not all) regions, anthropogenic warming is increasing atmospheric humidity faster than it is speeding up rates of evaporation and precipitation. Warming is, thus, projected to increase global WVRT by 3-6% K-1, lengthening the distance travelled between evaporation sources and precipitation sinks. Future efforts should focus on data integration, joint measurement initiatives and intercomparisons, and dynamic simulations to provide a formal resolution of WVRT from both Lagrangian and Eulerian perspectives.es_ES
dc.description.sponsorshipUniversidad de Costa Rica/[805-B9-519]/UCR/Costa Ricaes_ES
dc.description.sponsorshipGobierno de España/[RTI2018-095772-B-I00]/LAGRIMA/Españaes_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades/[]//Españaes_ES
dc.description.sponsorshipEuropean Regional Development Fund/[]/ERDF/Españaes_ES
dc.description.sponsorshipXunta de Galicia/[ED481B 2018/069]//Españaes_ES
dc.description.sponsorshipXunta de Galicia/[ED413C 2017/64]//Españaes_ES
dc.description.sponsorshipFulbright Program/[]//Estados Unidoses_ES
dc.description.sponsorshipCentro Universitario de la Defensa/[]/CUD/Españaes_ES
dc.description.sponsorshipNetherlands Organization for Scientific Research/[016.Veni.181.015]/NWO/Países Bajoses_ES
dc.description.sponsorshipNational Science Foundation/[1454089]/NSF/Estados Unidoses_ES
dc.description.sponsorshipResearch Council of Norway/[262710]/RCN/Noruegaes_ES
dc.description.sponsorshipEuropean Research Council/[773245]/ERC/Bélgicaes_ES
dc.language.isoenges_ES
dc.sourceNature Reviews Earth & Environment, vol.2 (8), pp.558-569.es_ES
dc.subjectAtmospheric dynamicses_ES
dc.subjectClimate changees_ES
dc.subjectHydrologyes_ES
dc.titleThe residence time of water vapour in the atmospherees_ES
dc.typeartículo científico
dc.identifier.doi10.1038/s43017-021-00181-9
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físicaes_ES
dc.identifier.codproyecto805-B9-519


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record