Show simple item record

dc.creatorMannarino, Iliana A.
dc.date.accessioned2015-05-19T18:52:28Z
dc.date.available2015-05-19T18:52:28Z
dc.date.issued2010-04-09 00:00:00
dc.identifier.citationhttp://revistas.ucr.ac.cr/index.php/matematica/article/view/302
dc.identifier.urihttps://hdl.handle.net/10669/12959
dc.description.abstract    n this article a new mimetic finite difference method to solve unsteady diffusionequation is presented. It uses Crank-Nicolson scheme to obtain time approximationsand second order mimetic discretizations for gradient and divergence operators inspace. The convergence of this new method is analyzed using Lax-Friedrichs equiv-alence theorem. This analysis is developed for one dimensional case. In addition tothe analytical work, we provide experimental evidences that mimetic Crank-Nicolsonscheme is better than standard finite difference because it achieves quadratic conver-gence rates, second order truncation errors and better approximations to the exactsolution.Keywords: mimetic scheme, finite difference method, unsteady diffusion equation,Lax-Friedrichs equivalence theorem.
dc.format.extent221-230
dc.relation.ispartofRevista de Matemática: Teoría y Aplicaciones Vol. 16 Núm. 2 2010
dc.titleA mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation
dc.typeartículo científicoes_ES
dc.date.updated2015-05-19T18:52:28Z
dc.language.rfc3066es
dc.identifier.doi10.15517/rmta.v16i2.302


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record